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Numerical Simulation of Aerated Powder
Consolidation’

Kristy A. Coffey and Pierre A. Gremaud

Department of Mathematics and Center for Research in Scientific Computation, North Carolina State
University, Raleigh, NC 27695-8205, USA

When a fine powder is dumped into a silo, the gas trapped by the particles will slowly escape
by diffusing through the material. The corresponding uneven gas pressure distribution
creates a body force that is taken into account through Darcy’s law. By using spatial
averaging, the formulation, even though essentially one-dimensional in space, includes
effects due the geometry of the container. An efficient and robust numerical scheme based
on a DAE formulation is proposed and implemented. Various computational results are
presented and discussed to establish the validity of the approach.

1. INTRODUCTION

This paper deals with various problems related to the simulation of aerated powder
consolidation. This kind of phenomena is routinely encountered during the handling of
fine powders in countless applications. Typically a powder is stored in a bunker or silo, see
Figure 1. During filling, air gets trapped in the material leading, in some cases, to partial
fluidization [8], [14] and noticeable changes of the mechanical properties. Over time the
excess air diffuses through the powder and eventually escapes through the top surface. This
paper aims to find the length of time a given material takes to consolidate. With respect
to applications, the ultimate goal is to be able to predict and consequently avoid flooding,
i.e., the sudden discharge from a hopper of a fine powder at a much greater rate than that
of the flow of ordinary granular materials. Further comments on the connection between
flooding and deaeration can be found in [12].

Early work by Janssen [6] analyzed the behavior of a column of granular material in a
container. Forces due to the gradient of gas pressure were neglected, and the analysis was
restricted to vertical cylinders. Some other models are based on drastic simplifications,
such as considering a constant vertical stress [9].

The present model is derived from basic conservation principles of mass and momentum.
The forces resulting from nonuniform gas pressure are taken into account through Darcy’s
law. The modeling assumptions roughly follow that of [8], see also [4], [12]. In those
publications, the effects of the geometry of the container are neglected, in effect, treating
only the case of cylindrical bunkers. In [4], that case is mathematically analyzed, and a

L This project was supported by the Army Research Office (ARO) through grant DAAD19-99-1-0188. The
first author was partially supported by a Department of Education GAANN Fellowship. The second author was
partially supported by the National Science Foundation (NSF) through grant DMS-9818900.

1



2 K.A.KRISTY AND P.A. GREMAUD
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top surface

A(z+52) = R(z#32)
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FIG.1. Geometry and coordinate systems for the vertical conical bunker. The height of the column of
powder of time ¢ is denoted H (¢).

robust numerical method is proposed and implemented. One of the contributions of this
paper is the extension of those models to general axisymmetric domains. Although the
modification may appear as a technical detail, it has profound ramifications with respect to
the structure of the system, see remarks at the end of §2.

Apart from using specific physical constitutive laws, the main restrictive assumption
consists of neglecting the fluctuations in the horizontal directions, allowing for an essentially
one dimensional in space formulation. In other words, the problem is described exclusively
in terms of quantities that have been averaged in the horizontal direction. It should be
noticed that in many situations the use of quasi one-dimensional consolidation models can
only be viewed as a first step, and full multidimensional approaches should be considered
instead. Werefer to [16] and [10], Chap.5, for remarks about the limitations of such models.
More importantly however, even a simplified model such as the one considered here is very
sensitive to the values of various material coefficients such as compressibility. This is
clearly illustrated by our numerical results, see e.g. Figure 5. Those material coefficients
are typically hard to measure in an accurate way.

The paper is organized as follows. The model is derived in Section 2. The resulting
system is nonlinear and strongly coupled. It consists of an essentially parabolic PDE, an
ODE and an integral equation. The three main unknowns are the average vertical stress, the
average gas pressure and the height of the powder in the container. Through an appropriate
transformation, the calculations are performed in a fixed reference computational domain.
A discretization is proposed in Section 3. The spatial discretization is second order accurate
and uses a combination of centered Finite Differences and BDF {1}, [5). The semidiscretized
in space system corresponds to a semi-explicit index 2 Differential Algebraic Equation
(DAE). The time discretization is done by a linearly implicit Euler discretization, which,
although only first order, is the simplest acceptable numerical approach for the above type
of DAEs. Our numerical experiments show it to be both robust and efficient in the present
context. Computational results are presented and discussed Section 4. Finally, Section 5 is
devoted to concluding remarks.

2. THE MODEL
We consider general axisymmetric hoppers as illustrated in Figure 1. In order to simplify
the problem, a pseudo one-dimensional formulation is derived by averaging all quantities
on horizontal cross-sections. The height of the powder in the container at a generic time
t can thus be described by a function H(t). Using cylindrical coordinates, the domain



POWDER CONSOLIDATION 3

occupied by the powder at time ¢ is given by
{(r,0,2);0 < 2 < H(t),0< 6 < 21,0 <7 < R(2)},

where R(z) stands for the radius of the hopper at height z.
For an arbitrary function f, we define

_ 1 R(z) p27
fz) = o) /0 A f(r,8,2)rdrdb,

where f(2) is the averaged value of the function f at height z in the hopper. By axisymmetry,
the functions considered here do not depend on the angular variable 8, and thus with a slight
abuse of notation

~ R(z)
& =qag [, S M

Invoking axisymmetry, the stress tensor has the form

orr 0 opy
T= 0 oggg O
ory 0 0,

Consider an infinitesimal slice of material of height §z. The forces acting on such a slice
are averaged and summed. The average vertical stress is clearly given by 7,,. We denote
by ~ and p the bulk density and gas pressure respectively, and by % and p, their respective
average values. The various forces are

e weight of solid: —y 7 R?(z) 62;

e if 7, is the average wall shear stress and &, the average normal stress on the wall,
there are upward forces of 27 R(z) 8z T, and 27 R(z) R'(2) 0z ;3

e upward pressure due to the wall: 27 R(2) R'(2) 0z p(2,t);

o pressure at bottom: {(z, t) © R?(z), and top: —(p(z, t)+0p) m R?(z+0z); this creates
a force —m R(2)%8p — 2w R(z) R'(2) p(2,t) 62;

e average vertical stress at bottom: &(z), and top: —(&;2(2) + 60;.); (compressive
stresses are taken as positive for granular material); this creates a force —m R%*(2)60,, —
27w R(z) R'(2) 6., 6z.

The resulting balance of forces equation is

2R (2) _ 2
RG) “* R()

On the wall, the law of sliding friction applies

0,6, + 0P+ (Fo + 3R (2))+7=0.

Tw = Pwlw, )]

where 1., is the coefficient of wall friction. The average stress tensor T is diagonal;
in other words, both &,, and &, are principal while 5,, = 0. Notice that G, (z) =
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cos? 8(2)orr(2) + sin® 0(2)0,.(2) where tan 6(z) = R'(z). The ratio of average vertical

stress &, to average wall stress &,

k=2 3)

- )
022

is taken as depending on the geometry only, see §4 for more details. The above assumption
is the pendant to Janssen’s analysis, [6], [8], [10], which is routinely used in vertical
bunkers. In (3), k depends on the geometry of the container and has to be determined

through experiments [8], [13] and §4. Equations (2) and (3) then yield

2R (2) +R(2)) ko.: +7=0. @

_ _ 2
0,5, +0:p+ R(z) Ozz — R() (pw

Let I be the density of the solid particles, which is assumed constant. The gas density,
denoted by p, is an unknown function of time and position. These two quantities are linked

through the bulk density -y
v =fsT'+ (1= fs)p, &)

where f, is the volume fraction occupied by the solid. Generally I' is at least three orders

of magnitude larger that p, and thus
~J

for 2. ®)

The average bulk density is considered as a function of the average major consolidating
stress, here 7,,, i.e., 7 = §(5,,). Various such relations have been proposed, see [10],

§6.2, for ateview. Those models typically make sense for only a limited range of values of

¥ ,,. Following [7], we assume
_ I

¥ =ym(l+—Z2)%, )
Om

where 0 < 8 < 1 is the coefficient of compressibility of the material, v, > 0O and 5, > 0
are material constants. We refer to [3] and [2] for respectively theoretical and experimental
investigations of the precise nature of the bulk density/stress relation.

Assuming powder is neither entering nor leaving the system, the total mass M of the

solid is conserved, leading to

H(t) M -
/ R%*(2) ¥(5(z2,t)) dz = —=M, t20 ®)
0
Applying the continuity equation to both gas and solid phases, we get
Y+ V- (yus) =0 ©)
= 0, (10)

o (1-2)p)+v- (=D pug)

where us and ug are the velocities of the solid and the gas, respectively.
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Using axial symmetry and applying the averaging operator (1) to (9) yields
R ) R(2)
07 + =7 R( ) Y(R(2), 2) us,r (R(2), 2) + W/o 9, (’y(r, z) ug o (7, z)) rdr=0.

Further, assuming the grains in contact with the wall to move tangentially with respect to
it, we observe u, »(R(z), z) = R'(2) us,z(R(2), 2). Elementary manipulations then leads
to

O + = R2( y 0 9, (R*(2)¥s,;) = 0.

Neglecting fluctuations in the radial direction gives ¥ s, ; &~ Y Us,,. Similar principles can
be applied to local conservation of gas. Those conservation laws then read

O+ 557~ 02 (R (2) ¥ s, z) =0, (11)

RQ( )
a(a-2)p)+ @—1@5 0. (R p(1-1)ay:) = 0 (12)

In addition to (3) and (7), two additional constitutive equations are considered. First, the
gas is assumed to be ideal and isothermal

D_Po
2= 13
P Po (13)

where pg and pg are constant reference values. Second, pressure gradient and velocities

are related through Darcy’s law, which reads here

'&g z— Usz = —K(’_Y) azﬁ’ (14)

)

where K is the permeability, taken as a function of the average bulk density. We take [8]

K(¥) =Ko (%)—a, (15)

where K and 7o are reference values and a is a positive constant. The parameters 3, o,
~m» 0, Ko and 7o appearing in (7) and (15) have to be determined experimentally.

We now eliminate velocities from the system. Putting together (14) and (11) yields, after
integration between 0 and a generic point z

[ R@oa@ e + B (1.0 + K20
0
— (0700 (5.0) + K(0)0:500)) =
Assuming no gas leaves the (closed) container at z = 0, natural boundary conditions at

the bottom are then %, ,(0,t) = 0 and 8,5(0, t) = 0. The previous equation can be solved
for @y, .(2), leading to

0 = =g [, R dE ~ K () 0:0(2).
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Using (13) and the above expression for @, ,(2), (12) can be rewritten in terms of pressure
p eliminating p from the problem.

The full system of equations can now be considered. The three unknowns of the
problem are the averaged gas pressure P, the averaged vertical stress &, and the height
of the powder H(t). We obtain the following system of integrodifferential equations in
{(z,1);0 <t,0< z < H(t)}

o:(Ldﬁaﬁ—§@7—§%5@<p;—- )/‘R%@&v (16)

K
“(1 - ") 3z(PK3zp) + = z762pa

0= zo'zz+azp+2R(( ))a'zz R(Z) (Nw‘*‘R,(z))k&zz‘l‘;?a (17)
3 H(t)
M = / R*(2)%(5.2(2,1)) dz. (18)
0

The system is completed by initial and boundary conditions

p(-,0) = po,
3.(H(t),t) =0, 0,p(0,t) = 0, P(H(t),t) = Patm,

I

where pgim is the value of atmospheric pressure. The boundary condition at 2 = 0
corresponds to a solid bottomed container. This can be easily modified to include the case
when some material exits through an outlet at the bottom. A mathematical analysis of the
above problem in the case of a cylindrical container, i.e., R'(z) = 0, can be found in [4].

A useful tool for the present kind of equations consists in mapping the entire problem
into a fixed spatial domain. Upon discretization, this type of formulation leads to better
stability properties than formulations where the grid moves with the material, such as [8].
Let

y==z/H@t) py.t) =50zt o(yt)=75=(21).
Based on these relations, the previous system of equations (16), (17) and (18) yields

(1——) (6tp yf’?yp}g( )) : (7’(%0—1/7’ yag,l((f))) (19)

()
may (P(; - 'I:)) /0 R2(H(t)y) ('y 0o —y~y' ”U}}{I,((:))>

1 gl Kp
- Hz(t) (1 F)ay(PKayp) + PHQ(t)’Y 6110 ayp,

R(HMyHE) _2H@)
R(H(t)y) R(H(t)y

1
5t = H) [ BE0OD (0 0)d, @

o
Il

0 = Oyo +0yp+2

) (pw + R’(z)) ko + H(t)y, (20)

where we have dropped the bar notation. Initial and boundary conditions become

p(y7 0) = po(y)v Y€ (07 1)) (22)
o(1,t) =0, &yp(0,t) 0, p(1,%t) = Patm, (23)

I
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The change from R(z) = cst to a general function R(z) is far from being benign. If R(z) =

Ry = cst, (21) can be solved for H(t): H(t) = %’Ig (fol v(o(y,t)) dy) 1. Taking the
derivative, one can also obtain an explicit expression for H’(t). Those expressions can be
then substituted in (19) and (20) to fully eliminate H from the system [4]. For general
functions R however, (21) is a nonlinear equation for H(t), which cannot be expected to
always yield explicit solutions. To maintain generality, H (%) is not eliminated from the
system before discretization but is rather computed as an unknown along with stress and
pressure.

3. DISCRETIZATION
These equations are discretized and solved in the fixed rectangular domain (0, 1) x (0, T').
Set Ay = 1/N andlety; = (i —1)Ay i=1,...,N + 1. The semidiscretized variables
are pressure P(t) = [Py(t),..., Pn(t)] and stress £(t) = [¥1(t), ..., En(t)]. Note that
the remaining unknown, H, depends only on time. The boundary conditions at y = 1 read
Pny1 = Pum and Ey41 = 0. A second order spatial discretization for both variables is
used. The discretized operators are

Cp: N x N matrix corresponding to a second order centered discretization of 9 with
pressure boundary conditions (at y = Oand y = 1),

D: N x N matrix corresponding to a second order centered discretization of 9y, with
pressure boundary conditions (at y = 0 and y = 1),

Cy: N x N matrix corresponding to a second order backward differentiation formula
(BDF [1], [5)) for 8, with stress boundary condition (at y = 1).

Although more sophisticated discretization methods, such as BDF based algorithms [1],
should be considered in space as well in general, the diffusion like dynamics of the present
problem are sufficiently simple to mitigate this point of view. The construction of C}, and
D is elementary. For C, we take

3 4-1 0 ... .. 0
0-3 4-1 0 0

)
Co=5x=1] 0 0-3 4-1 0
0 ... ... 0-3 4 -1
0 v ver e 0-3 4
L0 0 —2

In addition, the following discretized integral operators are introduced

N+1 i
1
Aa(W) = = ST wiW;  and (Ba(W))i = ) w;Wj,
Jj=1 j=1

where w denotes the weights of the quadrature. Three additional variables corresponding to
the derivatives of the three main three unknowns P, . and H are also introduced, U = d; P,
V =d,X and L = H'. The spatially discretized problem is

P =U (24)
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—a-N(v-L Py _ L
0 =(1-7) (U 7Y C,,P) Z (7 V-y5YCx (25)
1 /1 1 Py ) L
e - = p-—L A ’ _ = 2. 7
7 ((7 =)Cp 2 C, 2) (BA(R YV) HBA(R 7Y002)>
1 g PK , —
—gz(1- D, B)P + 557 CoTCpP + bel = f(P,U,V,%,H,L)
B 2HR' 2H ,
0 —Caz‘l‘CpP-{'E(—I:IT)E-FbC?—m(ﬂw‘*‘R)-l-H’y (26)
=G(P,U,V,%,H,L)
a4y =V @7
d:H =L (28)
0 = HAx (RYHY)y) =hWPUV,5,H,L), (29)

where 7(Z) and /(X)) are vectors and Y = [y1,...,y~]. The two vectors bcl and bc2
result from the presence of boundary conditions. Also, vector to vector multiplication in
the above expressions is taken to be componentwise. The problem has the form

&P = U,
0 = f(P,U,V,3,H,L),
0 = g(P,0,0,%, H,0),

ax =V

4H = L
0 = h(0,0,0,%, H,0)

This corresponds to an semi-explicit index 2 DAE or equivalently a fully implicit index 1
DAE [1}. A linearly Implicit Euler time discretization [5], [11] of (24)-(29) leads

I —At] 0 0 0 0 prtt _pn ur
—ALfP —ALfR —ALfR —ALfT -ALfE AL fE yrtt —gyn r
—Atg} —Atgh —Atgi —Atgy —Atgs —Atgs ynrtl _yn - At g"

0 0 —At] I 0 0 rrtl _yn yn

0 0 0 0 1 —At H~ — H™ Lr
—AthY —Athh —Ath} —Ath} —Athy —Athg Lt » A

where the subscripts denote derivatives with respect to the corresponding variables. The
first partial derivatives of f and g are evaluated through finite differences.

4. COMPUTATIONAL RESULTS
Two cases with different geometries are considered. The first corresponds to a cylinder
and the second to a bunker consisting of a cylinder for the upper portion and a cone for the
lower portion. The data is initialized as follows.
The values of various parameters in the model have been taken as to represent a realistic
situation

Pm = .25 I' = 200 lbs/ft3

Ym = 60 Ibs/ft> Ko =107 fi*lbs~1s~!
om = 13 Ibs/fi? a=4

7o = 80 Ibs/ft3 P = tan(m/9)
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The atmospheric pressure is pgm = 2116.8 Ibs/ft2.

The determination of the ratio & between wall stress and vertical stress, see (3), is more
delicate. In the case of a perfectly plastic flow, such a coefficient could be derived from
a plasticity model, Mohr-Coulomb for instance [10]. Although this is often done as part
of an analysis 3 la Janssen, such an approach is not consistent with the mechanical states
considered here since one cannot assume the material to have reached yield. The value of
the ratio k does, however, depend on the geometry. For plastic granular flows, the stresses
are usually believed to be close to an active state in a vertical cylindrical hopper, while
they tend to be in a passive state in converging conical hoppers for instance {10], {15].
Experimental evidence [13] seems to point to the fact that, even here, a similar behavior
can be observed. More precisely, the value of k tends to be much lower in a converging
conical section than in a vertical cylindrical one. The values below are taken to reflect this.

Let us consider the cylinder with radius R = 0.5ft (and thus R’ = 0) with an initial
height of powder H(0) = 5ft. The ratio & is taken as £ = 1/3. An initial pressure field,
Po, consistent with the boundary conditions in (23) is given as

P0(2) = Patm (1 + %(1 - (H?O))2)> .

In the calculations below, N = 200 and NT = T/ At = 500.

For the second case, the radius of the cylinder is R = 0.5 ft. The radius at the bottom
of the bunker is 0.4ft, and the height of the conical part is 1ft. Thus, R’ = 0.1. In order
to have approximately the same mass of material in this hopper as the first case, the total
initial height of the powder is H(0) = 5.459ft. The considered values of k are 1/3 in the
cylindrical part, and k = 3 in the conical part. The same initial pressure field is taken. In
addition, N = 200 and NT = T'/At = 500 as before.

Figure 2 gives a typical illustration of the behavior of the problem in a cylinder. Note that
Figure 2 is related to the original geometry of the problem, i.e., the variable is z not y. As
expected, a settlement of the powder is observed. For both graphs, the top line corresponds
to the position of the top of the powder column, i.e., the free boundary. Further, the pressure
field is found to asymptotically converge to a uniform pressure value corresponding to patm,
the atmospheric pressure, i.e., equilibrium of the pressure is established. The stress field
is also found to converge to a stationary distribution o, which, in terms of the original
variable z, is solution to

koo +70) = 0, 0<2z< Hg,
Ooo(Heo) =0,

2
0,000 — R_(‘z—jl‘w

where H,, is the asymptotic value of the height of the powder column. Figure 4, left,
illustrates the convergence to the asymptotic stationary state after 2000s.

Figure 3 gives a typical illustration of the behavior of the problem in a bunker consisting
of a cylinder as the upper part and a cone in the lower part. Again settlement of the powder
is observed by considering the top line of the graphs. As in the previous case, the pressure
field asymptotically converges to a uniform pressure value corresponding to patm . The
stress field also converges to a stationary distribution o, which, in terms of the original
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pressure (lbf/ftz) stress (Ibf/ﬂz)
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120
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FIG.2. Calculated pressure and stress fields in the cylindrical geometry; N = 200, NT = 500, T = 1500.
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FIG.3. Calculated pressure and stress fields in the cylinder-on-a-cone geometry; N = 200, NT = 500,
T = 1500s.




<y

POWDER CONSOLIDATION 11
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FIG. 4. Calculated stress field in the original geometry; left: cylinder, right:cylinder/cone geometry.

variable z, is solution to

R 2 ,
6zaoo+2k—(;50'oo —W(uw—l—R)kow%—’y(am) = 0, 0<z< Hy,

Ooo(Heo) =0,

where H, is the asymptotic value of the height of the powder column. Figure 4 illustrates
the convergence to the asymptotic stationary state after 2000s.

To verify the results of the calculations, an experiment must be designed so that the
parameters for the model can be determined. Very accurate measurements of these param-
eters are needed to verify the calculated results with experimental ones. Consider Figure 5
which shows the half-life of the over-pressure at the bottom of a cylindrical bunker versus
the compressibility parameter 3. The half-lives range from nearly zero to approximately
650 for 8 ranging from zero to four. It can be shown that the half-life of the over-pressure
is also sensitive to other parameters in the model [12].

5. CONCLUSIONS

Existing models for powder consolidation have been extended to general axisymmetric
domains in order to take into account geometrical effects. In this process and as with those
prior models, averaging on horizontal cross sections plays a fundamental simplifying role.
The resulting system consists of an essentially parabolic PDE, and an ODE in space and
an integral equation. In spite of the strong nonlinear coupling, those can be thought of as
respectively equations for the gas pressure, the vertical stress and the height of the powder.
A fundamental and problematic material parameter is the ratio k£ between wall stress and
vertical stress.

Unfortunately, some of the parameters entering the model, such as k or the compressibil-
ity (3, are not easy to measure in a reliable way. To make matters worse, the present work
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-

pressure half-life
g

FIG. 5. Calculated half-life of over-pressure versus the parameter 3.

illustrates that even relatively small variations in those coefficients can have a noticeable
effect on the solution, see, e.g., Figure 5. This may partially explain the relative sparsity of
experimental results for the present type of problems.

The main contributions of the paper are first a careful generalization of earlier models in
order to take geometrical effects into account and second the design and implementation
of a robust and efficient numerical algorithm for the corresponding equations. While they
extend earlier results [4], [8], [12], the presented computational experiments seem to be
consistent with them.

Various aspects of the present model are questionable, primarily the use of a pseudo one-
dimensional formulation through spatial averaging. Although a truly multidimensional
approach appears to be desirable, its precise nature, especially in term of constitutive
assumptions, is unclear.
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